Jonathan J Crofts
Nottingham Trent University
4th June 2024
Clinical measurements
Example Axonal degeneration/demyelination in Multiple Sclerosis (Evangelou et al. 2000)
Left: control Right: MS
Diffusion-weighted MR imaging obtains similar pictures in vivo
Sacraficial tracer studies carried out on primates represent the gold standard
Tractography algorithms construct a vector field describing the connectivity structure
Choices of scales determine how brain network models are built
We consider here large-scale brain network models
\[\begin{align*} \frac{\mathrm{d}u_i}{\mathrm{d}t} &= -u_i + \phi\left(au_i(t-\tau)+bv_i(t-\tau)+P+\epsilon\sum_{j}w_{ij}u_j(t-\rho)\right) \\ \frac{\mathrm{d}v_i}{\mathrm{d}t} &= -v_i + \phi\left(cu_i(t-\tau)+dv_i(t-\tau)+Q\right), ~i=1,\ldots,n \end{align*}\]
\[ R = \frac{\langle \bar{u}(t)^2\rangle - \langle \bar{u}(t)\rangle^2}{\frac{1}{n}\sum_{i=1}^n\left(\langle u_i(t)^2\rangle-\langle u_i(t)\rangle^2\right)} \]
\[\begin{align*} \frac{\mathrm{d}u}{\mathrm{d}t} &= -u + \phi\left(au(t-\tau_1)+bv(t-\tau_2)+P\right) \\ \frac{1}{\alpha}\frac{\mathrm{d}v}{\mathrm{d}t} &= -v + \phi\left(cu(t-\tau_2)+dv(t-\tau_1)+Q\right) \end{align*}\]
\[\phi(z) = \frac{1}{1+e^{-\beta z}} \]
chaotic behaviour
chaotic and quasiperiodic solutions
For row normlised connectivity matrices, the coupled system of WC masses admits synchronous solutions of the form \[(u_i(t), v_i(t)) = (u_s(t),v_s(t))\quad i=1,\ldots,n\] such that the functions $(u_s, v_s)$ satisfy
\[\begin{align*} \frac{\mathrm{d}u_s}{\mathrm{d}t}&= -u_s(t)+\phi\left(au_s(t-\tau)+bv_s(t-\tau)+\epsilon u_s(t-\rho)+P\right)\\ \frac{\mathrm{d}v_s}{\mathrm{d}t}&=-v_s(t)+\phi\left(cu_s(t-\tau)+dv_s(t-\tau)+Q\right)\\ \end{align*}\]
This decoupling happens since \[ \epsilon\sum_{j=1}^n w_{ij}u_j(t-\rho) = \epsilon u_s(t-\rho)\sum_{j=1}^nw_{ij} = \epsilon u_s(t-\rho) \]
Linearisation about the fixed point $(u^*,v^*)$ takes the form
\[ \frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix}u\\v\end{pmatrix} = A\begin{pmatrix}u\\v\end{pmatrix}+B\begin{pmatrix}u(t-\tau)\\v(t-\tau)\end{pmatrix}+C\begin{pmatrix} u(t-\rho)\\v(t-\rho)\end{pmatrix} \]with
\[ A = \begin{pmatrix}-1&0&\\0&-1\end{pmatrix}, \quad B = \begin{pmatrix}a\beta u^*(1-u^*)&b\beta u^*(1-u^*)&\\c\beta v^*(1-v^*)&d\beta v^*(1-v^*)\end{pmatrix} \]and
\[ C =\begin{pmatrix}\epsilon\beta u^*(1-u^*)&0&\\0&0\end{pmatrix} \]So that we need to solve
Substituting $\lambda =i\omega$ in the characteristic equation, $\Delta(\lambda)$, and separating real and imaginary parts gives conditions for a Hopf bifurcation
\[ \begin{align*} 0 &= (1-k_1\cos(\omega\tau)-k_2\cos(\omega\rho))(1-k_3\cos(\omega\tau)) -(\omega+k_1\sin(\omega\tau)\\&+k_2\sin(\omega\rho))(\omega+k_3\sin(\omega\tau))-k_4\cos(2\omega\tau) \end{align*} \]
\[ \begin{align*} 0 &= (1-k_1\cos(\omega\tau)-k_2\cos(\omega\rho))(\omega+k_3\sin(\omega\tau)) +(\omega+k_1\sin(\omega\tau)\\&+k_2\sin(\omega\rho))(1-k_3\cos(\omega\tau))+k_4\sin(2\omega\tau). \end{align*} \]
Here
\[ k_1 = a\beta u^*(1-u^*),\quad k_2 = \epsilon\beta u^*(1-u^*),\quad k_3 = d\beta v^*(1-v^*) \]and
\[ k_4 = bc\beta^2 u^*(1-u^*)v^*(1-v^*) \]Simultaneous solution of these equations define a HB
To better understand the influence of model parameters we used DDE-BIFTOOL to perform a numerical bifurcation analysis of the self-coupled system
To better understand the bifurcation plots from the previous slides we consider a selection of 1D slices
Torus and period doubling bifurcations are often signs of chaotic behavior
We computed the maximal Lyapunov exponent as a function of the parameters $(\rho, \epsilon)$
Great dynamical systems resource including codes
Approximate the DDE
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = F(x(t),x(t-\tau)) \]as \[ \begin{align*} x^{(0)}_{k+1} &= x^{(0)}_k + \tau F(x_k^{(0)},x_k^{(N)})/N\\ x^{(i)}_{k+1} &= x_k^{(i-1)} \quad\text{for}\quad 1\leq i\leq N \end{align*} \] Here, \[ x^{(i)}_k = x(t_k-i\Delta t) \quad\text{and}\quad \tau = N\Delta t\]
This is known as the Euler map method
Else represent the DDE \[ \frac{\mathrm{d}x}{\mathrm{d}t} = F(x(t),x(t-\tau)) \]
as a system of $N+1$ ODEs \[ \begin{align*} \frac{\mathrm{d}x_0}{\mathrm{d}t} &= F(x_0,x_N)\\ \frac{\mathrm{d}x_i}{\mathrm{d}t} &= \frac{N\left(x_{i-1}-x_{i+1}\right)}{2T}\quad\text{for}\quad 1\leq i\leq N-1\\ \frac{\mathrm{d}x_N}{\mathrm{d}t}&= \frac{N\left(x_{N-1}-X_N\right)}{T} \end{align*} \]
Solve using standard methods such as RK4
We deployed the Euler map method to obtain:
Interestingly the highlighted region sits between the torus bifurcation branches
To better understand the impact of network structure on the synchronous solutions studied thus far we considered a simple ring network architecture
With adjacency matrix given by
\[ A = \begin{pmatrix} 0&1&0&\cdots&1\\ 1&0&1&\ddots&\vdots\\ \vdots&\vdots&\ddots&\ddots&0\\ 0&0&\cdots&0&1\\ 1&0&\cdots&1&0 \end{pmatrix} \]In our experiments $n=6$ for computational ease
In the case of a ring network stability is governed by the following equation
\[ \mathrm{det} \left[ I_n\otimes\left( \lambda I_2 - A - Be^{-\lambda\tau}\right) - \left(K+K^{n-1}\right)\otimes \left(C_\epsilon e^{-\lambda\rho}\right)\right] = 0, \]where $A, B$ are the same as for the self-coupled node,
\[ C_\epsilon = \begin{pmatrix}\frac{1}{2}\epsilon\beta u^*(1-u^*)&0\\0&0\end{pmatrix}, \]and
\[ K = \begin{pmatrix} 0&1&0&\cdots&0\\ 0&0&\ddots&\ddots&\vdots\\ \vdots&\vdots&\ddots&\ddots&0\\ 0&0&\cdots&0&1\\ 1&0&\cdots&0&0 \end{pmatrix} \]is the basic circulant permutation matrix
\[ \prod_{k=1}^n \mathrm{det}\left[\lambda I_2 - A - Be^{-\lambda \tau} - \left(e^{i\phi_k} + e^{i(n-1)\phi_k}\right)C_\epsilon e^{-\lambda \rho}\right] = 0, \]
Four different ICs for $(\rho, \epsilon) = (1.025, 0.205)$
Metastability is an important concept in neuroscience and is related to the concept of state (or attractor) switching, which naturally arises in noisy, multistable systems
Closely connected to idea of dynamic functional connectivity
temporal profile                                         snapshot of phase
FC given by the mean phase coherence of the oscillators
To conclude we briefly address the question as to whether or not network dynamics can be regularised through a combination of coupling and delay
\[ a = d = -6, b = c = 2.5, P = Q = 0.2, \beta = 60 \]
PHD student : Iain Pinder